Ambient modal testing of a double-arch dam: the experimental
campaign and model updating

Abstract. A finite element model updating of a double-curvature-arch dam (La Tajera, Spain) is carried out hereof using the
modal parameters obtained from an operational modal analysis. That is, the system modal dampings, natural frequencies
and mode shapes have been identified using output-only identification techniques under environmental loads (wind,
vehicles). A finite element model of the dam-reservoir-foundation system was initially created. Then, a testing campaign was
then carried out from the most significant test points using high-sensitivity accelerometers wirelessly synchronized.
Afterwards, the model updating of the initial model was done using a Monte Carlo based approach in order to match it to the
recorded dynamic behavior. The updated model may be used within a structural health monitoring system for damage
detection or, for instance, for the analysis of the seismic response of the arch dam reservoir-foundation coupled system.
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1. Introduction

The safety of concrete dams is nowadays a subject of increasing importance due to the new safety
regulations and economy requirements since failure of dams may cause loss of human lives and
properties downstream of the structure. The dynamic testing of dams is a very interesting
nondestructive test to add to common existing monitoring systems, such as piezometric measures,
pendulums, differential settlement gauges, etc. It provides valuable information about dam global
structural behaviour, as well as a tool to track possible structural damage. This can be achieved
updating a numerical model used within a Structural Health Monitoring system (SHM). The mechanical
behaviour of the dam is highly influenced by the surrounding foundation [1-3], and the dynamic
analysis of slender double-arch dams allows to obtain information of the whole structural system
formed by the arch plus the foundation.
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This paper describes the modal testing and the model updating of the Tajera dam. This is a double-
arch concrete dam located in river basin of Tajuiia River (Guadalajara, Spain). The dam is 62 m high,
220 m wide at the crest with a reservoir capacity of 64 Hm3. This structure is being intensively
monitored because a crack appeared during the construction process in 1993 that required important
interventions at that date.
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Acceleration measurements were carried out using high-sensitivity accelerometers wirelessly
synchronized which enable to undergo the Operational Modal Analysis (OMA) of the structure. In order
to quantify uncertainties due to the estimation process, two OMA methods based on the Stochastic
Subspace Identification (SSI) technique have been used to extract the modal parameters. The structural
system formed by the dam body and the foundation has been modelled using the ANSYS * Finite
Element Method (FEM) suite of software. The model updating is carried out using the experimental
results.
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Model updating methods are divided into direct and indirect methods. On the one hand, direct
methods provide a computationally efficient approach that updates the components FEM matrix in
one step [4,5]. This methodology requires a very accurate FEM model and high quality measurements.
However, the use of direct methods often make optimization of parameters unrealistic, losing thus
their physical meaning [4]. On the other hand, indirect methods computes objective functions that are
minimized in order to reduce the error between analytical and experimental results. The latter has
been the option adopted in this work. The objective function is minimized on the material properties
updating the dynamic FEM model behaviour to the measured one.
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The paper continues with the description of the structure, the undergone experimental campaigns
as well as the OMA results. Section 3 depicts the FEM model of the structure followed by the model
calibration process carried out from the measured modal parameters. Finally, some conclusions are
drawn and suggestions for future work are given.
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2. Structure description and its experimental modal testing
2.1. Tajera dam. Description

The Tajera Dam is located on the Tajuiia river, in the municipality of El Sotillo in the province of
Guadalajara, Spain. The main function of this structure is the regulation of the river to provide the
demands associated to the downstream basin. The typology of the dam is double curvature arch with
62 m high above foundation, a crest of 220 m long and a volume of 68 Hm3 reservoir. The concrete
wall of the dam consists of 13 blocks, including 11 of 16.5 m long and one more at each abutment of
20 m long. The crest has a single-track road and both-side pedestrian sidewalks (see Figure 1).
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In 1993, during the construction process, a crack was detected [6]. To repair the damage, the
internal bottom gallery was filled with concrete and, since then, the structure has been carefully

monitored. Therefore, the information available, added to the slenderness of the structure that makes
it suitable for OMA, has influenced on its selection for this investigation.
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2.2. Ambient modal analysis

The OMA has been carried out using 10 V/g sensitivity accelerometers (PCB 393B31 and 393B12)
distributed along the crest in radial direction. The accelerometers are synchronized wiressly using a
ZigBee protocol allowing up to 100 nanoseconds of precision [7]. The synchronization process effect
on the modal estimation is further studied in ref. [8].
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An experimental campaign was carried out on 9 July 2015 without presence of precipitation and

with 49.74% of water volume capacity (950.369 m.s.n.m. and 29.625 Hm3). The maximum, minimum
and average temperatures recorded on the day were 18.5, 11.6 and 14.4 °C, respectively.
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(a) Lateral view. (b) Downstream face of the dam.

Figure 1. Tajera Dam. General views.
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Figure 2. Accelerometers positions along the dam crest. Symbol represents the

accelerometer positions.

At the measurement time, the temperature was 18.1 °C. After several trial tests, it was decided to place
only accelerometers along the crest of the dam. During this campaign two measurements of 30-min.
recording were carried out. Figure 2 shows the 20 test points used for both tests. All these points were
distributed along the crest of the dam, at locations where the highest modal displacements occur. In
addition, the lack of intermediate galleries makes the placing of sensors at different heights a complex
task so that this possibility was dismissed.

)ou@mgmsmdlﬁw‘@:ﬁuj Qﬁ"’ﬂ iz bl 1 G 0 01T Sl a0 YA Hga sles (5,5 ojlusl e o
b K 6,5, 8 aadi Vo ¥ JSo o aloeil Las .ol ploil (glaaBo Yo (65,5 o3lail 50 (S cpl Job 50 05,8 513 s 2 olacal

a8l o 3l goge JSil gl e s o i oS ol jo o ZU slasl jo bl )l des a0 Lis g0l 90 o 0l
&S oo s odgzmn 5SS w03l i lelas )l o be jguis pols S8 0 Sl lo (6 I8 0gu ¢ ol ogdle Ll ool &y 565

W28y ol Ol ols po



For the first test, it was decided to record the data with the bottom outlet open initially and after
15-min. recording was cut-off. It was observed that under the bottom outlet working, high-frequency
noise was added to the measures. Figure 3 shows channel 5 time history in which the closing of the
bottom outlet is clearly appreciated. Additionally, it was observed that accelerometers located near
the abutments showed less-noisy signals than those located closed to the center. This fault might be
due to: a) the operation of the bottom outlet introduces high-frequency noise, and b) the higher wind
at the center of the dam, as compared to the area near the abutments.
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Figure 3. Time history of channel 5 when the bottom outlet operation is turned off.
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Figure 4. Spectrogram of channel 1 using short Fast Fourier Transform.



The sampling frequency of the acquisition system is 1302.083 Hz. The raw data are filtered using a
Butterworth low-pass filter of order 5 with a cut-off frequency at 17.5 Hz. Besides, the raw data are
decimated with a decimation factor of 36 providing a final sampling frequency of 36.17 Hz; therefore,
the Nyquist frequency becomes 18.08 Hz. Figure 4 shows the spectrogram of channel 1 using the short
Fast Fourier Transform. Interestingly, the natural frequencies are observed during the whole test for
this near-to-abutment point.
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Two different OMA techniques based on the SSI [9] and programmed in MATLAB*rare used for test.
The techniques used are: covariance-driven SSI (SSl-cov) and data-driven SSI (SSI-data). The same
criteria to define a pole of the stabilization diagram as stable are used for the two identification
techniques. These criteria have to fulfill three requirements against estimates of the previous state-
space order: (i) the frequency must match within 1% (relative), (ii) the damping ratio must match within
5% (absolute), and (iii) the mode shapes must match within 95%, using the Modal Assurance Criteria
(MAC) for comparing. Additionally, modes with identified damping ratios higher than 5% are also
rejected.
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Figure 5. Selected poles with two different methods. (--) SSI-cov and (°) SSI-data.
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Figure 6. First two modal shape estimates along the dam crest for the second test using SSI-data
technique. (- - -) represents the undeformed dam crest and (°) indicates the modal displacement at the
test points.
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The SSI-cov, programmed in MATLAB*, has the advantage of its conceptual simplicity and the ability
to compute the Probability Density Function of the identified system parameters. It selects the average
values of the modal parameters for each column (of stable aligned poles) with a minimum number of
stable poles [10]. The SSl-data has been applied using MACEC (Commercial Toolbox of MATLAB =for
modal analysis [11]), and it has the advantage of an optimal statistical performance when the weighting
matrices are properly chosen. A statistical analysis of the stable poles is used to select final results [12].
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Figure 5 illustrates the final selected poles for the two techniques and the averaged normalized
power spectral density both the second test. From the above mentioned characteristics, the
recommendations given in [13] and the author’s experience, the use of several methods
simultaneously is a good way to improve the results as well as to quantify the estimation uncertainties.
Finally, Table 1 shows the estimated natural frequencies for both test and for both techniques.
Frequencies with the same color belong to the same vibration mode. Figure 6 shows an example of
identified modal shapes corresponding to the lowest two modes obtained with SSl-data in the second
test.
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1sttest 2nd test

Mode SSl-cov (Hz) SSI-data (Hz) SSl-cov (Hz) SSlI-data (Hz)

1 5.3439 6.2381 5.3124 5.3114
2 6.2535 7.6381 6.2857 6.2727
3 7.6404 7.6363 7.6435

4 12.0025
5 12.0326 12.0124 11.8386 12.0421
6 14.4093 14.4286 12.0477 12.1095
7 15.5822 14.2930 14.3089
8 14.4312 14.4526
9 15.5844 15.5797
10 17.3580
7 modes 6 modes 9 modes 10 modes

Table 1. Frequencies of the selected modes (foma).

3. Finite Element Model Updating
3.1. Finite Element Model description

This work makes use of a previous model statically calibrated with different measurements related to
the static behaviour of the dam. This first calibration makes that the starting model is already a fairly
well adjusted model. The model is a 3D FEM model with 2247 8-nodes solid elements, 3608 nodes and
5 different types of materials: one for the concrete vault of the dam and 4 for the foundations, which
further enhances the model. Figure 7 and Table 2 shows the location and the material properties used
in the FEM model. The boundary conditions in the foundation were considered at a distance where
the tension influence added from these restrictions on the vault can be neglected.
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The numerical modal analysis allows a number of vibration modes limited by the number of degrees
of freedom available. However, only a reduced set of the first modes is usually considered. In this case,

the first ten modes have been extracted and consistent mass matrix has been used, given the natural
frequencies shown in the Table 3.
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The Block Lanczos method has been used to solve the eigenvalue problem. Figure 8 shows the first
vibration mode, from top and isometric view, and Figure 9 shows the top view of the first four vibration
modes. Finally, Table 4 shows both, experimental and numerical estimations of natural frequencies,
together with initial relative errors, for the first four estimations. The sum of the errors is also included
for comparison. The experimental estimation obtained from the second test with SSl-data has been
adopted as the experimental solution, foma, since the higher number of estimations similar to the
numerical ones were obtained (see Tables 1 and 3).
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Material number Element E (N/m2) p (kg/m2) v
1 Foundation 1 1.37-10" 2.40-10% 0.22
2 Foundation 2 6.86-10'° 2.40-10° 0.25
3 Foundation 3 9.81-10'° 2.40-10° 0.23
4 Foundation 4  4.90-10'° 2.40-10% 0.35
5 Dam 3.43-10'° 2.40-10% 0.22

Table 2. Summary of FEM materials. E: Young’s Modulus, p: density and v: Poisson’s ratio.
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Figure 7. FEM of the dam. Numbers indicate the material types.



Mode 1 2 3 4 5 6 7 8 9 10

frem (Hz) 49220 6.1435 7.2747 8.2567 10.511 11.285 11.639 12.209 12.760 13.244

Table 3. Frequencies of the FEM.
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Figure 8. Modal shape of the first vibration mode at f=4.9220 Hz of the Tajera Dam.
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(c) Mode 3 (f=7.2748 Hz). (d) Mode 4 (f=8.2567 Hz).

Figure 9. Top view of the first four modes.
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ModefoMA(Hz) fFEM (HZ) E(%)

1 5.3114 4.9220 7.33
2 6.2727 6.1435 2.06
3 7.6435 7.2748 4.82
4 9.3148 8.2567 11.36
25.57
[foma - frem|
Table 4. Summary of frequencies before updating with € = foma

3.2. Model updating

As a first approach to the model updating, the following objective function has been adopted:

N

| fioma - fiFem |

J= Zui (1)

fioma

i=1

The first four modes are considering, N = 4, and using Table 4, the initial value of ] = 6.2229% is
obtained. Parameters u; weight the importance of each mode. Thus, the following weights have been
adopted p1=0.2039, u2=0.1635, u3=0.1376 and us= 0.1262.
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Figure 10. Scheme of model updating process.

The weight associated to each mode is numerically selected with ANSYS+, according to the modal mass
mobilized for each frequency (modal participation factor).
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So, the FEM model was calibrated based on the experimental results using the Monte Carlo method
[14], which is based on distributing randomly independent variables into prescribed ranges [15]. The
material properties Ejand p;shown in Table 2 have been considered as independent variables. The
updating process is illustrated in Figure 10 in which the flowchart indicates that two packages of
software have been used. That is, 10000 combinations of independent variables are generated in
MATLAB*rand the modal analysis is carried out in ANSYS~. Finally, the updated material properties are
derived from the minimization of functional (1):
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in S ey ) with j = 1,-++,5, (2)
in which the ten considered independent variables are within a £50% range of the initial values. Table
5 shows the summary of frequencies and errors after updating de FEM model of the Tajera Dam (as
compared to Table 4). After this process, the value of the objective function becomes J = 2.8479%. The
relative error reduces more than 50% with respect to the initial model. Table 6 shows a comparison
between material properties values (before and after updating and the difference). The parameters
have been changed up to +35%. As it was expected, due to the weighting adopted in functional (1),
the smallest error is obtained for the first mode. Figure 11 shows the frequency estimations for all the
tests. Note that there is overlapping between estimations. The final numerical solution adopted are
enclosed in a red cycle. Figure 12 depicts the influence of vault material properties on the first natural
frequency estimation.
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Mode foma (Hz) frem (Hz) £(%)
1 5.3114 5.2973 0.27

2 6.2727 6.6052 5.30

3 7.6435 7.8061 2.13

4 9.3148 8.8842 4.62
12.32

Table 5. Summary of frequencies after updating.
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Element Parameter Initial value Updating value Difference (%)

, E (N/m?) 1.37-1010 1.67-1010 21.78
Foundation 1 p (kg/m?3) 5 40-10° 595103 22 64
d ) E (N/m?) 6.86-1010 5.43.1010 -34.08
Foundation
p (kg/m3) 2.40-103 2.15-10° -10.47
E (N/m?) 9.81-10%° 1.30-1011 33.02
Foundation 3 s e
p (kg/m?3) 2.40-103 2.29-103
d E (N/m2) 4.90-1010 5.47-1010 11.62
Foundation 4
p (kg/m3) 2.40-103 2.10-103 -12.57
D E (N/m?) 3.43-10%° 4.01-1010 16.97
am
p (kg/m3) 2.40-103 2.41-103 0.42

Table 6. Comparison between material properties values (before and after updating and difference).
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Figure 11. Frequency estimations for the first four mode and for all the simulations. The red cycle
indicates the solution adopted.
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Figure 12. Vault material properties against the first frequency estimation. The red cycle indicates the
adopted solutions.

4. Conclusions and ongoing works

The FEM model updating of a double-arch dam has been presented in this work. A quite simple model,
using solid elastic elements, has been shown to represent quite well the dynamic behaviour of this
structure. This model has been calibrated from the OMA using a fairly simple optimization approach
based on Monte Carlo method. It has been demonstrated that our wireless synchronized acquisition
system can be used from this kind of structure.
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o5 oslizl b o3les £55

A second campaign was also carried with different ambient conditions and water volume stored.
This campaign was on 26/09/2015, without presence of precipitation and with a volume stored of
35.15% (946.729 m.s.n.m. and 20.935 Hm3). The maximum, minimum and average temperatures
recorded were 10.5, 6.7 and 7.8 °C, respectively. The results obtained using the same signal processing
and OMA parameters are shown in Table 7. It can be observed that under less water stored and smaller
temperature, the natural frequencies are reduced appreciably. Therefore, further measurements must
be made to study the impact of environmental agents on the modal parameters.
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Future work will explore other techniques to update the FEM model. Besides, a continuous
monitoring together with automated modal identification is being planned to be installed in order to

analyse dependencies between modal properties and water volume stored and environmental agents.
The author’s experience on a footbridge [16] will be employed for this task.
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3ndtest Mode
SSl-cov (Hz) SSl-data (Hz)

1 5.1598 5.1647
2 5.9002 7.1592
3 7.1551
4 8.8743
5 8.9573 14.4433
6 11.1068 15.1067
7 12.5673
8 13.2872
9 14.4391
10 15.1293
11 15.7180
12 16.1362
12 modes 6 modes

Table 7. Frequencies of the selected modes.
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